High-resolution structure of NodZ fucosyltransferase involved in the biosynthesis of the nodulation factor.
نویسندگان
چکیده
The fucosyltransferase NodZ is involved in the biosynthesis of the nodulation factor in nitrogen-fixing symbiotic bacteria. It catalyzes alpha1,6 transfer of l-fucose from GDP-fucose to the reducing residue of the synthesized Nod oligosaccharide. We present the structure of the NodZ protein from Bradyrhizobium expressed in Escherichia coli and crystallized in the presence of phosphate ions in two crystal forms. The enzyme is arranged into two domains of nearly equal size. Although NodZ falls in one broad class (GT-B) with other two-domain glycosyltransferases, the topology of its domains deviates from the canonical Rossmann fold, with particularly high distortions in the N-terminal domain. Mutational data combined with structural and sequence alignments indicate residues of potential importance in GDP-fucose binding or in the catalytic mechanism. They are all clustered in three conserved sequence motifs located in the C-terminal domain.
منابع مشابه
Bacterial nodulation protein NodZ is a chitin oligosaccharide fucosyltransferase which can also recognize related substrates of animal origin.
The nodZ gene, which is present in various soil bacteria such as Bradyrhizobium japonicum, Azorhizobium caulinodans, and Rhizobium loti, is involved in the addition of a fucosyl residue to the reducing N-acetylglucosamine residue of lipochitin oligosaccharide (LCO) signal molecules. Using an Escherichia coli strain that produces large quantities of the NodZ protein of B. japonicum, we have puri...
متن کاملRhizobium sp. strain NGR234 NodZ protein is a fucosyltransferase.
Rhizobium sp. strain NGR234 produces a large family of lipochitooligosaccharide Nod factors carrying specific substituents. Among them are 3-O- (or 4-O-) and 6-O-carbamoyl groups, an N-methyl group, and a 2-O-methylfucose residue which may bear either 3-O-sulfate or 4-O-acetyl substitutions. Investigations on the genetic control of host specificity revealed a number of loci which directly affec...
متن کاملFunctional Analysis of a Pomegranate (Punica granatum L.) MYB Transcription Factor Involved in the Regulation of Anthocyanin Biosynthesis
Background: Pomegranate fruit (Punica granatum L.) is a rich source of anthocyanin pigments resulting in vibrant colours and anti-oxidant contents. Although the intensity and pattern of anthocyanin biosynthesis in fruit are strongly influenced by R2R3-MYB transcription factors, little is known about the regulation and role of MYB in anthocyanin pathway of pomegranate. Objectives: The present st...
متن کاملDiversification of lupine Bradyrhizobium strains: evidence from nodulation gene trees.
Bradyrhizobium strains isolated in Europe from Genisteae and serradella legumes form a distinct lineage, designated clade II, on nodulation gene trees. Clade II bradyrhizobia appear to prevail also in the soils of Western Australia and South Africa following probably accidental introduction with seeds of their lupine and serradella hosts. Given this potential for dispersal, we investigated Brad...
متن کاملNovel biosynthesis of silver nanoparticles (SNPs) using Chrysosporium sps. and Aspergillus sps.
Interaction of Chrysosporium sps. and Aspergillus sps. with aqueous AgNO3 was investigated for synthesis of silver nanoparticles. Biological reduction and extracellular synthesis of silver nanoparticles in 28 hour at 270C and pH 5.6 was done. The nanometallic dispersion was characterized by surface plasmon absorbance measuring at 424 – 530 nm for Ag nanop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta biochimica Polonica
دوره 54 3 شماره
صفحات -
تاریخ انتشار 2007